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Abstract
We report for the first time exact solutions of a completely integrable nonlinear
lattice system for which the dynamical variables satisfy a q-deformed Lie
algebra—the Lie–Poisson algebra suq(2). The system considered is a q-
deformed lattice for which in the continuum limit the equations of motion
become the envelope Maxwell–Bloch (or SIT) equations describing the resonant
interaction of light with a nonlinear dielectric. Thus the N -soliton solutions we
report here are the natural q-deformations, necessary for a lattice, of the well
known multi-soliton and breather solutions of self-induced transparency (SIT).
The method we use to find these solutions is a generalization of the Darboux–
Bäcklund dressing method. The extension of these results to quantum solitons
is sketched.

PACS numbers: 0545Y, 0545M, 4265T

1. Introduction

The Maxwell–Bloch (MB) system of equations has been fundamental to much of theoretical
quantum optics and nonlinear optics since they were first introduced in the late 1960s (some
history of the subject is given in [1] and also in [2]). These MB systems are of abiding
theoretical interest. A feature is that their complete integrability is handed down from the
‘reduced MB’ or (RMB) equations to the envelope MB (or self-induced transparency (SIT))
equations, thence, at resonance, to the sine–Gordon equation (cf, e.g., [3, 4]). Each member
of this hierarchy has important physical applications, while the physics of SIT, in particular,
remains a very active field of current research [5], even into the femto second pulse regime
[1, 6].

Our recent paper [1] followed up ideas of quantum groups and their relevance to integrable
systems theory and derived a q-deformed lattice version of the envelope MB system together
with its zero-curvature representation: in the continuum limit these lattice equations become
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the resonant envelope MB (or SIT) equations. In this paper we now report exact N -soliton
solutions of this q-deformed dynamical system. Solitons of the lattice equations were promised
in [1], and a Riemann–Hilbert method of solution sketched. However, for the pure N -soliton
solution reported in this paper it is more convenient to use a variant of the Darboux–Bäcklund
dressing method which (see below) makes an ansatz for the dressing in terms of appropriate
N bound states eigenvalues.

Historically [3, 7] multi-soliton solutions of the SIT equations were found by the method
which become Hirota’s method [2]; Lamb [8] gave the inverse scattering solutions; the inverse
method for the RMB equations was used in [3, 9] to obtain the multi-soliton solutions for the
SIT equations; [10] gave a further account of inverse scattering for these SIT equations. These
several results on inverse scattering confirmed the generality of a method first devised to solve
the Korteweg–de Vries equation [2].

Expressed in terms of the complex slowly varying envelopes for the electric field and
polarization ε, ρ and the real inversion N , the SIT equations can be put in the form (e.g. [10]),

∂ξ ε = 〈ρ〉
∂τρ + 2iηρ = N ε

∂τN = − 1
2 (ε

∗ρ + ερ∗).

(1)

Propagation is along a coordinate z and ξ = �x with x = z/c. The time τ is a retarded
time, τ = �(t − x); η = (ω− ω0)/2� is the detuning and � = 2πn0ω0µ

2/h̄ is the coupling
constant. The number n0 is the density of two-level atoms with the non-degenerate transition
frequency ω0 (rad s−1); µ is the matrix element for dipole-allowed transitions at ω0. The star
denotes complex conjugation and 〈·〉 = ∫ ∞

−∞ h(η)(·) dη is the average over inhomogeneous
broadening: h(η) is a δ-function in the sharp-line limit case [3].

In [1] we constructed the completely integrable lattice system whose equations of motion
for three dynamical variables sn, Hn and βn at each lattice site n can be written as

∂tβn = − 1
2q

2(Nn+Hn)(βn+1 + βn) − 1
2 iq2Nn(sn + sn−1)

∂t sn = − 1
2 i(βn + βn+1)(1 + 2γ sns

∗
n) + 1

2q
2(Nn+Hn)(sn + sn−1) (2)

∂tHn = 1
2 i(sn − iq2Hnβn)(β

∗
n + β∗

n+1) − 1
2 i(s∗

n + iq2Hnβ∗
n)(βn + βn+1).

Here q2Nn = 1 + 2γβ∗
nβn, q = eγ and γ > 0, is a real parameter (a coupling constant, see

below). Reference to [1] shows that in equations (2) we use sn = √
2γχn + iq2Hnβn: in [1] the

second equation is for ∂tχn. As can be checked (and cf [1]) when the lattice spacing � → 0
for a continuum limit with

t → t�−1 x = n� βn =
√
�E(x) χn = �S(x)

Hn = �S3(x) γ = κ�/2 κ > 0.
(3)

One reaches the resonant sharp-line form of the envelope MB (or SIT) equations (1) via
the definitions

ε(ξ, τ ) = 2E(x, t) ρ(ξ, τ ) = −2iS(x, t) N(ξ, τ ) = 2S3(x, t) (4)

with � = √
κ . Our use of ‘lattice Maxwell–Bloch system (LMB) equations’ for equations (2)

stems from this fact.
A Hamiltonian for this LMB system is [1]

HL = 1
2

M∑
n=1

{√
2γ

[
χ∗
n (βn+1 + βn) + χn(β

∗
n+1 + β∗

n)
]

+ iq2Hn
(
β∗
n+1βn − βn+1β

∗
n

)}
. (5)
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For M < ∞ it would be natural to impose periodic boundary conditions. However, we
shall look for lattice soliton solutions and here think of M → ∞ with suitable boundary
conditions still to be specified. The Poisson brackets of equation (5) are

{X∗
n,Xm} = i{2Hn}δmn {Hn,Xm} = −iXnδmn (6)

and the quantities X∗
n, Xn and Hn form the suq(2) Lie–Poisson algebra, by {·} we mean

{x} = (qx − q−x)/(2γ ). This algebra has a central element XnX
∗
n + {Hn}2 = {S}2. The

variables X∗
n, Xn enter (2) via χn = qHnXn [1]. The variables βn, β∗

n (the ‘electric fields’, see
equations (3) and (4) above) satisfy the Lie–Poisson q-boson algebra

{βn, β∗
m} = iq2Nnδmn {Nn, βm} = −iβnδmn. (7)

2. The q-deformed solitons

In [1] we obtained the zero-curvature representation of the system (2) which means that we
constructed an over-determined linear system for a matrix-function (n(ζ, t) such that

(n+1 = L(ζ |n)(n (8)

∂t(n = V (ζ |n)(n (9)

where

V (ζ |n) =
2∑

j=−2

ζ jVj (n) L(ζ |n) = q−Nn−Hn

2γ

2∑
j=−2

ζ jLj (n). (10)

Here

V0(n) = 2iγ (βns
∗
n−1 + β∗

nsn−1)σ
z V±2 = ∓ 1

4σ
z (11)

V+1(n) = −
√

2γ

2

(
0 iβ∗

n

sn−1 0

)
V−1(n) =

√
2γ

2

(
0 s∗

n−1

−iβn 0

)
(12)

while

L0(n) = 2iγ

(
βns

∗
n 0

0 β∗
nsn

)
− q2(Nn+Hn)σ z L±2 = 1

2 (σ
z ± I ) (13)

L+1(n) =
√

2γ

(
0 iβ∗

n

sn 0

)
L−1(n) =

√
2γ

(
0 s∗

n

−iβn 0

)
. (14)

The parameter ζ ∈ C which appears in equations (8)–(10) will be thought of as the spectral
parameter, while in continuum limit (9) is a spectral problem in L in the usual 2 × 2 sense
(Zakharov–Shabat linear system [2]); σx,y,z are the Pauli matrices. The compatibility condition
of the two linear systems equations (8) and (9) under the isospectral condition ∂tζ = 0 is

∂tL(ζ |n) + L(ζ |n)V (ζ |n) − V (ζ |n + 1)L(ζ |n) = 0 (15)

and this coincides with equations (2), independent of ζ . However, ζ = eiγ λ, λ ∈ C as
introduced in [1]; λ is a second ‘spectral parameter’ and the real axis in the λ-plane is the
circle of unit radius in the ζ -plane; λ is the usual spectral parameter for equations (1) derived
in the continuum limit. Note that time t is suppressed in equations (8) and (9): an explicit time
dependence will be indicated only where and when it is needed. Reference to equations (8) and
(9) may make plain the fact that the function (n(ζ ) possesses essential singularities of rank
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2 at ζ = 0,∞. It is also important to note that the linear equations (8) and (9) are invariant
under the transformations

(n(ζ ) → (−1)n−1σy(∗
n

(
1

ζ ∗

)
σy (n(ζ ) → σ z(n(−ζ )σ z. (16)

We can now turn to the derivation of exact solutions of the LMB system equations (2).
For this, as mentioned, we develop a variant of the Darboux–Bäcklund dressing procedure
[11] rather then any inverse scattering method [2, 12]. The essence of the dressing procedure
is to choose a ‘seed’ solution of the system equations (2), typically some trivial solution, and
construct from it a new solution associated with additional points ζν , ν = 1, . . . , N (say) of
the discrete spectrum: thus det (n(ζν, t) = 0 [2, 11, 13] for the new solution (n(ζ, t).

For initial and boundary conditions observe that for SIT and the envelope MB system
equations (1), the typical experimental situation is the half-space problem: an initial optical
pulse enters, supposedly without reflection from x < 0 into the resonant medium x � 0 and
here breaks up into background radiation and a sequence of soliton pulses. The corresponding
mathematical problem is the Cauchy problem at the point x = 0: ε(x, t)|x=0 = ε0(t) together
with the asymptotic boundary conditions (in t) that for x > 0, N → N−, ρ → 0 as t → −∞.
For the so-called ‘attenuator’ N− is the ground state N− = −1 of the inversion density. For
the lattice problem we therefore take the half-space problem in which βn(t) and sn(t) are
sufficiently decreasing for |t | → ∞, while Hn(t) → H such that H corresponds to N−. In
this way we would look for a solution in the half-space n > 0, for which it becomes the Cauchy
problem specified by the conditions

βn(t)|n=1 = β1(t) sn(t)|n=1 = s1(t) Hn(t)|n=1 = H1(t). (17)

With this as motivation we report in this paper exact N -soliton solutions derived by the
dressing procedure based on the seed solution

βn = 0 sn = 0 Hn = H. (18)

The corresponding solution of the linear system equations (8) and (9) is then

((0)
n (ζ, t) = exp

{− 1
4σ

zt
} (

ζ 2 − 1

ζ 2

) (
zn(ζ ) 0

0 (−z (1/ζ ))n

)
(19)

where z(ζ ) = 1
2γ

(
ζ 2q−H − qH

)
, while the corresponding operator V (0)(ζ |n, t) has V (0)

0 =
V

(0)
±1 = 0, and V (0)

±2 = ∓ 1
4σ

z. For the N -soliton solution of equations (2) we construct the new
solution ((N)

n (ζ ) of equations (8) and (9) through the ansatz

((N)
n (ζ ) = F(ζ )((0)

n (ζ ). (20)

The functionF(ζ ) is to have poles only at the essential singularities of(n(ζ ). As was indicated
above these points are 0 and ∞. This suggests the ansatz

F(ζ, n, t) = F0(n, t) +
N∑
i=1

ζ iF+i (n, t) + ζ−iF−i (n, t). (21)

It is convenient to impose the additional conditions on F(ζ ) that

σyF ∗
(

1

ζ ∗

)
σy = F(ζ ) σ zF (−ζ )σ z = (−1)NF (ζ ) (22)
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which are obviously compatible with the transformation equation (16). We can also normalize
the matrix F(ζ ) so that for each (n, t)

F−N = Q
(

f (n, t) 0
0 f −1(n, t)

)
FN = Q∗

(
f −1(n, t) 0

0 f (n, t)

)
(23)

where the constant Q is independent of n and t and f (n, t) is a real function. We now choose
a set of N points {ζν}Nν=1 where det ((N)

n (ζ ) is to vanish. This means

F(ζν)4(ζν) = F

(
1

ζ ∗
ν

)
σy4∗(ζν) = 0 (24)

where

4(ζν) =
(
41(ζν)

42(ζν)

)
= ((0)

n (ζν)

(
1

−cν

)

and cν are constants independent of n and t . The set {ζν, cν}Nν=1 together constitute a necessary
and complete set of parameters (spectral data) for an N -soliton solution [2].

The system of equations (24) has a unique solution satisfying conditions equations (22)
and (23) if we choose

Q = exp

[
i
π

2
N + i

N∑
ν=1

αν

]
ζν = eγν+iαν (25)

where γν , αν ∈ R. In so far as ζ = eiγ λ = eγν+iαν and λ is the spectral parameter for
equations (1) we are interested in zeros ζν defined by the half λ-plane Im λ � 0 which lie
inside the circle |ζ | = 1 in the ζ -plane. The linear system, (8) and (9) is invariant under the
gauge transformation (20) with the potentials written as

F−N+1F
−1
−N =

√
2γ

(
0 −s∗

n−1

−iβn 0

)

qH
f (n + 1, t)

f (n, t)
= qNn+Hn.

(26)

We turn next to a determination of the matrices F±i (n, t). The conditions equations (22)
suggest that we should take the matrices F−N+2k diagonal, and the matrices F−N+2k−1 off-
diagonal in agreement with the first of equations (26).

So will F−1
−N be diagonal from equation (23) we set

F−1
−NF−N+2k−1 =

(
0 yk

ỹk 0

)
F−1

−NF−N+2k =
(

xk 0
0 x̃k

)
(27)

in which yk , ỹk , xk , x̃k are (so far) arbitrary independent complex numbers.
Then the conditions for the zeros ζν equations (24) mean that we can instead solve

(1, 0) +
N∑
k=1

zkσ
2k
ν = 0 ν = 1, . . . , N (28)

in which the zk are row-vectors zk = (xk, yk), and the matrices σν = Sν7νS
−1
ν in which

7ν = diag(ζν, 1/ζ ∗
ν ); the matrices Sν are defined as

Sν =

 41(ζν) −4∗

2(ζν)

1

ζν
42(ζν) ζ ∗

ν 4
∗
1(ζν)


 (29)
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and are determined from equations (24) using the seed solution equation (18). In this way the
N -soliton solution of equations (2) is put in the form

βn = − i√
2γ

y∗
NxN sn−1 = − 1√

2γ

Q∗

Q
y∗

1

xN
(30)

q−2(Nn+Hn) = q−2H xN(n + 1)

xN(n)
(31)

where xN(n, t), etc is determined from equations (28).
For the one-soliton case, N = 1, we can choose the single point of the discrete spectrum

ζ0 = eγ0+iα0 (say) and γ0 < 0. We then find the formulae

βn(t) = i

√
2

γ
sinh (2γ0)

exp i(φ(n, t) − α0)

cosh (ψ(n, t) − γ0)
(32)

sn−1(t) = −
√

2

γ
sinh (2γ0)

exp i(φ(n, t) + α0)

cosh (ψ(n, t) + γ0)
(33)

q2(Nn+Hn) = q2H 1 − tanh (ψ(n, t) − γ0) tanh ϑ0

1 − tanh (ψ(n, t) + γ0) tanh ϑ0
. (34)

Here

φ(n, t) = t cosh (2γ0) sin (2α0) − n;0 + φ0 (35)

ψ(n, t) = t sinh (2γ0) cos (2α0) − nϑ0 + ψ0 (36)

ϑ0 = 1

2
ln

sinh2(γ0 − Hγ ) + sin2 α0

sinh2(γ0 + Hγ ) + sin2 α0
+ 2γ0 (37)

;0 = arg
sinh (γ0 − Hγ + iα0)

sinh (γ0 + Hγ + iα0)
+ 2α0 (38)

where φ0 and ψ0 are arbitrary real constants.
The formulae for various multisoliton solutions for the lattice system (2) are too

complicated to be presented in detail here. Since for the lattice these solutions depend explicitly
on the deformation parameter q = eγ , these N -soliton solutions (N = 1, 2, . . .) are naturally
thought of as q-deformed solitons. In the continuum limit equation (3), q → 1 and γ → 0
and q-deformation disappear.

3. Conclusions and discussion

As was mentioned above in the case of the real (imaginary) dynamical variables and in the
sharp-line limit, the MB system equations (1) is equivalent to the sine–Gordon equation. The
same procedure is applicable to the LMB system which means that in the case of the reduction
to the real (imaginary) dynamical variables the LMB system is, in fact, a new version of the
lattice sine–Gordon equation. The dressing procedure described in this paper can be extended
to this case, delivering a whole variety of solutions of the (lattice) S-G equation (solitons,
breathers, etc). In so far as equations (32)–(38) form a q-deformed soliton we can use this
result to gain an insight into the quantum case. One objective of the investigation of the
quantum MB system must be to find out, the precise nature of, and to calculate, the ‘quantum
soliton’ solutions. In [1, 14] we introduced and solved exactly through the quantum inverse
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method (up to the solutions of the Bethe equations) a quantum version of the LMB system
equations (2). Since this model provides a natural and exactly solvable lattice regularization
of the continuous limit quantum envelope MB (or SIT) system (and recall that the quantum
sine–Gordon can be embedded in this quantum MB) it is very useful for the construction of
the evolution operator and for investigating the quantum dynamics of these continuous models
which have a direct physical meaning. It is known from a number of quantum models [15–17]
that a ‘string solution’ of the Bethe equations for the quantum model corresponds, in the limit
of a large number of collective excitationsM , to the soliton solution of the classical counterpart
of the exactly solvable quantum system. Quantum features are detected in optical solitons in
fibres in [18, 19] but quantum solitons as in, for example, [20] may not necessarily mean the
true solitons considered in this paper. A plausible conjecture which we will justify elsewhere
is that the soliton solution equation (32) for the ‘electric field’ is given by the matrix element
limM→∞〈0|C(λ1)C(λ2) . . . C(λM)β

†
nB(λ1)B(λ1) . . . B(λM−1)|0〉, where B(λ) is a creation

operator for a quasiparticle and C(λ) = B†(λ) is an annihilation operator. The rapidities
{λl}Ml=1 are roots of the Bethe equations:

e2iγMλn
sinM γ (λl − iS)

sinM γ (λl + iS)
=

N∏
j=1

sin γ (λl − λj − i)

sin γ (λl − λj − i)
.

The operator β†
n is the electric field operator which satisfies the q-deformed q-boson algebra

analogous to the algebra equation (7). In [17] it was shown that the creation operator B(λ)
plays the role of the quantum counterpart of a Blaschke multiplier which builds the classical
soliton solution [12]. The dressing operator F(ζ ) equation (21) up to certain modifications
has the same meaning. This indicates very well how the experience obtained in the analysis of
the c-number system reported in this paper can be used in understanding the quantum case. In
practice this experience helps us to trace out the formation of the classical optical soliton from
a large number of quantum collective excitations, a physical problem of considerable interest.
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